

ALLAN LAKE RESTORATION

1

CENE 486 Capstone Presentation 4/28/17

Skylar Clemons Gabe Green Brando Gutierrez

Background

- 40 miles SE of NAU
- About 10 miles south of Mormon Lake on Lake Mary Road.
- Improve waterfowl habitat
- Arizona Game and Fish
 - Disturbed the clay layer
 - Used explosives (dynamite)

Figure 1: Allan Lake Location [1]

Project Understanding

- Disturbed/penetrated clay layer
- Less native wetland plants
- Area within trenches is 17 acres
- The trenches are about 5-6' deep

Figure 2: Allan Lake aerial picture [1]

The Problem in the Trenches

Figure 3: Basic overview of the soil profile

Project Purpose

Goal: To improve the site's water retention rate

We will provide the Forest Service with:

- •Characterize the existing soil at Allan Lake
- •Analyze the existing soil
- •Develop an AutoCAD file of Allan Lake
- •Develop a Cut and Fill analysis
- Provide cost estimations based on our alternatives

Exclusions

- •The Forest Service will conduct the following:
- Permits for environmental protection
 - National Environmental Policy Act (NEPA)
- Permits for low impact on ecology & wildlife
 - Arizona Department of Environmental Quality (ADEQ)
 - Environmental Protection Agency (EPA)
- Construction management and construction
- Hydraulic model and analysis

Stakeholders & Client

Stakeholders:

- Arizona Game & Fish
- Ecology (natural inhabitants)
- National Forest Service
- People (recreation)

Figure 4: Smokey Bear [2]

Gutierrez 7

Client: Tom Runyon, Coordinator Hydrologist for the Coconino National Forest

Technical Advisors:

- Dr. Odem (grader)
- Gary Slim
- Kit McDonald

: Acknowledgements:

- Mark Lamer
- Lar Reiboldt
- Pete Page

Figure 5: Dr. Odem [3]

Survey work and Initial Sampling

Figure 6: Surveying at Allan Lake [5]

Survey Work:

- Collected 2881 points
- Over 4 site visits

Sampling:

- Collected over 14 samples using a Soil Auger
- Developed Soil Profile

Figure 7: Soil Sample Locations [1]

Soil Profile Results

Table 1: Undisturbed	d soil profile data		
Undist	urbed Soil Pro	Top Soil	
Layer Description	Thickness (inch)	Average Depth (feet)	Top Clay Layer
Top Soil	0"-6"	0'-0.5'	
Top Clay Layer	11''-30''	0.5'-2.5'	Bottom Clay Layer
Bottom Clay Layer	26"-36"	2.5'-5'	Sandy Lean Clay
Sandy Bottom Layer	N/A	5' and below	Figure 8: Undisturbed soil profile

Soil Profile Results

Table 2: Disturb	ed soil profile data		
Disturbed Soil Profile			Side Cast
Layer Description	Thickness (inch)	Average Depth (feet)	Top Clay Layer
Side Cast	0"-18"	0'-1'	
Top Clay Layer	11"-30"	1'-3'	Bottom Clay Layer
Bottom Clay Layer	26"-26"	3'-5.5'	
Sandy Bottom Layer	N/A	5.5' and below	Figure 9: Disturbed soil profile

Tests Conducted for Soil Analysis

Table 3: Soil tests conducted

Test	Samples Tested	Number of Trials (per sample)	Total Tests Conducted
Liquid Limit	4	8	36
Plastic Limit	4	8	36
Hydraulic Conductivity	4	1-5	12
Organic Content	28	1	28
Proctor Compaction	3	5	15
Wet Sieve Analysis	4	3	12

Soil Testing

- •ASTM D2974-Moisture Content
- •ASTM D2974-Organic Content
- •ASTM D4318-Atterberg Limits
- •ASTM C325-Wet Sieve Analysis
- •ASTM D5084-Hydraulic Conductivity
- •ASTM D-698-Proctor Compaction

Soil Analysis Results

Table 4: Soil results

Soil	Liquid Limit (%)	Plastic Limit (%)	% Fines	USCS Soil Classification	Hydraulic Conductivity (cm/s)	Organic Content	Proctor Compaction Results-Ideal Moisture Content (%)
Side Casted Soil	59.8	49	75	Lean Clay with Sand	2.3 x 10^-5	12%	59.8
Top Clay Layer	71	40.6	93	Lean Clay	>1.0 x 10^-7*	8%	71
Bottom Clay Layer	63.4	38.6	95	Lean Clay	>1.0 x 10^-7*	6%	63.4
Sandy Bottom Layer	49	21	70	Sandy Lean Clay	4.8 x 10^-2	3%	49

Topographic Map

- Existing outlet: 7461.30 ft.
- Surveyed with ArcGIS
- Verified survey by site visit

Table 5: Key for topographic map

Maximum	Minimum	
Elevation (feet)	Elevation (feet)	
7473.04	7461.99	
7461.99	7461.30	
7461.30	7460.98	
7460.98	7460.54	
7460.54	7459.89	
7459.89	7458.64	
7458.64	7457.06	
7457.06	7453.90	

Figure 10: Current site conditions

Comparison of design cross sections

Clemons 14

Construction Method

- Top 6" of topsoil must be removed due to organic matter •
- Will be stockpiled for redistribution following construction .
- Side cast will be backfilled into trench

Design Alternatives

Alternative 1: Raise trenches to 1' below pre-existing grade

Pros: Lower cost, lower evaporation rate, quicker construction

Figure 17: Design Alternative 1

Alternative 2: Raise trenches to .75' above preexisting grade

Pros: Lower infiltration rate, less damage from large animals, less prone to freeze/thaw cycles

Alternative 1: 1' below pre-existing grade

Total Earthwork:

- 21,000 yd^3 clay cut
- 21,000 yd³ clay fill
- 12,800 yd³ topsoil cut
- 12,800 yd³ topsoil fill

Swell factor: 1.40 Shrink Factor: 1.33

Table 6: Key for alternative 1

Minimum Elevation	Maximum Elevation
-10.00'	-1.75'
-1.75	-1.00'
-1.00'	-0.25
-0.25	0.25
0.25	1.00'
1.00'	3.00'
3.00'	10.00'

Figure 19: Proposed cut and fill

Clemons 17

Alternative 2: .75' above pre-existing grade

Total Earthwork:

- 29,960 yd³ clay cut
- 29,960 yd³ clay fill
- 18,000 yd³ topsoil cut
- 18,000 yd³ topsoil fill

Swell factor: 1.40 Shrink Factor: 1.33

Table 7: Key for alternative 2					
Minimum Elevation	Maximum Elevation				
-10.00'	-1.75				
-1.75	-1.00'				
-1.00'	-0.25				
-0.25	0.25				
0.25	1.00'				
1.00'	3.00'				
3.00'	10.00'				

Figure 20: Proposed cut and fill

Clemons 18

Cost of Alternatives

Table 8: Cost Analysis of Alternative 1

Alternative 1	Quantity (ft^3)	Unit Cost (\$)	Item Cost (\$)
Cut & Fill of On-Site Clay:	21,000	\$8.5 per cubic ft.	\$178,500
Top Soil Removal and Redistribution:	12,800	\$11.5 per cubic ft.	\$147,200
	\$325,700		

Table 9: Cost Analysis of Alternative 2

Alternative 2	Quantity (ft^3)	Unit Cost (\$/ft^3)	Item Cost (\$)
Cut & Fill of On- Site Clay:	29,960	\$8.5 per cubic ft.	\$254,660
Top Soil Removal and Redistribution:	18,000	\$11.5 per cubic ft.	\$207,000
	Total Cost		\$461,660

Project Management

Table 10 : Project Schedule

	Work	Projected Date	Actual Date
	() or it		
Task 1.0	Research	10/13/2016	10/13/2016
Task 2.0	Field Work	11/18/2016	11/18/2016
Task 3.0	Geotechnical Lab Analysis	3/15/2017	3/23/2017
3.1	ASTM D2974 Moisture Content	2/3/2017	2/3/2017
3.2	ASTM D2974 Organic Content	2/3/2017	2/3/2017
3.3	ASTM D5054 Hydraulic Conductivity	2/14/2017	3/12/2017
3.4	ASTM D4318 Atterberg Limits	2/26/2017	3/12/2017
3.5	ASTM C325 Wet Sieve Analysis	3/14/2017	3/14/2017
3.6	ASTM D-698 Proctor Compaction	3/15/2017	3/15/2017
Task 4.0	Develop Design	4/20/2017	4/20/2017
Task 5.0	Project Management	5/3/2017	5/3/2017

Gutierrez 20

Conditions at Allan Lake

Figure 21 : Allan Lake March 10th [5]

Figure 22: Allan Lake February 17th [6]

Project Management Continue

Table 11: Staffing Cost.

1.0 Personnel	Staff Project Engineer Engineer Geotechnical Technician Surveyor Administrative Assistant Intern	Projected Hours 40 45 220 120 35 25	Actual Hours 45 65 160 100 45 35	Rate, \$/hr 163 88 45 65 45 30	Projected Cost \$ 6,520.00 \$ 3,960.00 \$ 9,900.00 \$ 7,800.00 \$ 1,575.00 \$ 750.00	Actual Cost \$ 7,335.00 \$ 5,720.00 \$ 7,200.00 \$ 6,500.00 \$ 2,025.00 \$ 1,050.00
Total Personnel =		485	450	436	\$30,505.00	\$29,830.00
2.0 Travel	5 Meetings @ 55 mi/meeting	\$2.00/mi			\$ 100.00	\$ 100.00
3.0 Total					\$30,605.00	\$29,930.00
					(Gutierrez 22

Future Considerations

- •Survey of the proposed road route
- Acquire permits for earthwork
- •Building a dam
- •Build a fence to keep elk and bovine out of wetland

References

[1] Google Earth. "Allan Lake aerial picture" [Online]. Available: www.google.com/earth

[2] Google Images. "Smokey the Bear" [Online]. Available: www.google.com/Images

[3] Northern Arizona University Civil and Environmental Engineering. Faculty [Online]. Available:

http://nau.edu/cefns/engineering/civil-environmental/ faculty/

- [4] Photo taken by Brando Gutierrez
- [5] Photo taken by Skylar Clemons
- [6] Photo taken by Gabe Green

Questions?

Proposed rerouting of road

Image 2: Proposed route [11]

Additional Considerations

- By adding a dam, water retention can greatly improved
- Difficult to analyze impacts of designs without changing soil analysis
- Using current site conditions the following table was generated (average end area method)

Water Elevation (ft)	Volume (ft ³)	Percent Full (%)			
7455.00	2,400	1			
7457.00	69,000	39			
7459.00	119,300	68			
7460.00	163,400	93			
7461.29	176,200	100			
<mark>7462.00</mark>	<mark>428,000</mark>	<mark>243</mark>			
<mark>7463.00</mark>	<mark>1,046,800</mark>	<mark>594</mark>			
Table 1: Water elevation comparisons [10]					

Table 1: Water elevation comparisons [10]

Proctor Compaction Results

Difficulties with the Soil

Image 4: The start of Digging [5]

Image 5: 30 minutes into digging [6]

Image 7: 2 hours into digging [8]

Image 8: Clay Brownies [9]

Image 9: Clay stuck to the extractor 3 head [10]

35